Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synthetic biology aims to expand the genetic code by increasing cellular information storage and retrieval. A recent advance is the dTAT1-dNaM unnatural base pair, which is more photo- and thermostable than dTPT3-dNaM while maintaining high efficiency and fidelity in vitro and in vivo. However, the photophysics and cytotoxicity behavior of dTAT1 under UV light have not been investigated. We demonstrate that dTAT1 populates the triplet state upon 390 nm excitation but exhibits minimal cytotoxicity in cells. Analysis of reactive oxygen species indicates that dTAT1 produces a low singlet oxygen quantum yield of 17% while it generates superoxide, a less harmful reactive oxygen species. Its triplet lifetime is 2.7 times shorter than that of dTPT3, contributing to its lower photocytotoxicity. These findings highlight the potential of dTAT1 for safe genetic code expansion and therapeutic applications, providing valuable insights for designing next-generation unnatural nucleosides with minimal impact on cellular health.more » « lessFree, publicly-accessible full text available May 29, 2026
-
Heavy-atom-free photosensitizers (HAF-PSs) have emerged as a new class of photosensitizers aiming to broaden their applicability and versatility across various fields of the photodynamic therapy of cancers. The strategy involves replacing the exocyclic oxygen atoms of the carbonyl groups of established biocompatible organic fluorophores with sulfur, thereby bathochromically shifting their absorption spectra and enhancing their intersystem crossing efficiencies. Despite these advancements, the photophysical attributes and electronic relaxation mechanisms of many of these HAF-PSs remain inadequately elucidated. In this study, we investigate the excited state dynamics and photochemical properties of two promising HAF-PSs, thio-coumarin and thio-acridone. Employing a combination of steady-state and time-resolved techniques from femtoseconds to microseconds, coupled with quantum chemical calculations, we unravel the electronic relaxation mechanisms that give rise to the efficient population of long-lived and reactive triplet states in these HAF-PSs.more » « lessFree, publicly-accessible full text available November 27, 2025
-
Abstract The development of a suitable irradiation setup is essential for in vitro experiments in photodynamic therapy (PDT). While various irradiation systems have been developed for PDT, only a few offer practical and high‐quality setups for precise and reproducible results in cell culture experiments. This report introduces a cost‐effective illumination setup designed for in vitro photodynamic treatments. The setup consists of a commercially available light‐emitting diode (LED) lamp, a cooling unit, and a specially designed 3D‐printed enclosure to accommodate a multiwell plate insert. The LED lamp is versatile, supporting various irradiation wavelengths and adjustable illumination fields, ensuring consistent and reliable performance. The study evaluates the setup through various parameters, including photon flux density, illumination uniformity, photon distribution across the multiwell plate, and temperature changes during irradiation. In addition, the effectiveness of the LED‐based illumination system is tested by treating mouse mammary breast carcinoma cells (4T1) with Rose Bengal and LED irradiation at around 525 nm. The resulting IC50of 5.2 ± 0.9 μM and a minimum media temperature change of ca. 1.2°C indicate a highly promising LED‐based setup that offers a cost‐effective and technically feasible solution for achieving consistent, reproducible, and uniform irradiation, enhancing research capabilities and potential applications.more » « less
-
Site-selected sulfur-substituted nucleobases are a class of all organic, heavy-atom-free photosensitizers for photodynamic therapy applications that exhibit excellent photophysical properties such as strong absorption in the ultraviolet-A region of the electromagnetic spectrum, near-unity triplet yields, and a high yield of singlet oxygen generation. Recent investigations on doubly thionated nucleobases, 2,4-dithiothymine, 2,4-dithiouracil, and 2,6-dithiopurine, demonstrated that these set of dithionated nucleobases outperform the photodynamic efficacy exhibit by 4-thiothymidine–the most widely studied singly substituted thiobase to date. Out of the three dithionated nucleobases, 2,6-dithiopurine was shown to be the most effective, exhibiting inhibition of cell proliferation of up to 63% when combined with a low UVA dose of 5 J cm −2 . In this study, we elucidated the electronic relaxation pathways leading to the population of the reactive triplet state of 2,6-dithiopurine. 2,6-Dithiopurine populates the triplet manifold in less than 150 fs, reaching the nπ* triplet state minimum within a lifetime of 280 ± 50 fs. Subsequently, the population in the nπ* triplet state minimum internally converts to the long-lived ππ* triplet state within a lifetime of 3 ± 1 ps. The relatively slow internal conversion lifetime is associated with major conformational relaxation in going from the nπ* to ππ* triplet state minimum. A unity triplet yield of 1.0 ± 0.1 is measured.more » « less
An official website of the United States government
